
Chapter 3

A little hydrodynamics

To provide a background for the presentation of the theory of stellar oscillations, this
chapter briefly discusses some basic principles of hydrodynamics. A slightly more detailed
description, but still essentially without derivations, was given by Cox (1980). In addition,
any of the many detailed books on hydrodynamics (e.g. Batchelor 1967; Landau & Lifshitz
1959) can be consulted. Ledoux & Walraven (1958) give a very comprehensive introduction
to hydrodynamics, with special emphasis on the application to stellar oscillations.

3.1 Basic equations of hydrodynamics

It is assumed that the gas can be treated as a continuum, so that its properties can be
specified as functions of position r and time t. These properties include the local density
ρ(r, t), the local pressure p(r, t) (and any other thermodynamic quantities that may be
needed), as well as the local instantaneous velocity v(r, t). Here r denotes the position
vector to a given point in space, and the description therefore corresponds to what is seen
by a stationary observer. This is known as the Eulerian description. In addition, it is often
convenient to use the Lagrangian description, which is that of an observer who follows the
motion of the gas. Here a given element of gas can be labelled, e.g. by its initial position r0,
and its motion is specified by giving its position r(t, r0) as a function of time. Its velocity

v(r, t) =
dr

dt
at fixed r0 (3.1)

is equivalent to the Eulerian velocity mentioned above.
The time derivative of a quantity φ, observed when following the motion is

dφ

dt
=

(
∂φ

∂t

)

r
+∇φ · dr

dt
=
∂φ

∂t
+ v · ∇φ . (3.2)

The time derivative d/dt following the motion is also known as the material time derivative;
in contrast ∂/∂t is the local time derivative (i.e., the time derivative at a fixed point).

The properties of the gas are expressed as scalar and vector fields. Thus we need a little
vector algebra; convenient summaries can be found, e.g. in books on electromagnetism (such
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44 CHAPTER 3. A LITTLE HYDRODYNAMICS

as Jackson 1975; Reitz, Milford & Christy 1979). I shall assume the rules for manipulating
gradients and divergences to be known. In addition, we need Gauss’s theorem:

∫

∂V
a · n dA =

∫

V
div a dV , (3.3)

where V is a volume, with surface ∂V , n is the outward directed normal to ∂V , and a is
any vector field. From this one also obtains

∫

∂V
φn dA =

∫

V
∇φdV (3.4)

for any scalar field φ.

3.1.1 The equation of continuity

The fact that mass is conserved can be expressed as

∂ρ

∂t
+ div (ρv) = 0 , (3.5)

where ρ is density. This is a typical conservation equation, balancing the rate of change of
a quantity in a volume with the flux of the quantity into the volume. Had there been any
sources of mass, they would have appeared on the right-hand side. By using the relation
(3.2), equation (3.5) may also be written

dρ

dt
+ ρdiv v = 0 , (3.6)

giving the rate of change of density following the motion. Note that ρ = 1/V , where V is
the volume of unit mass; thus an alternative formulation is

1

V

dV

dt
= div v . (3.7)

Hence div v is the rate of expansion of a given volume of gas, when following the motion.

3.1.2 Equations of motion

Under solar or stellar conditions one can generally ignore the internal friction (or viscosity)
in the gas. The forces on a volume of gas therefore consist of

i) Surface forces, i.e., the pressure on the surface of the volume

ii) Body forces.

Thus the equations of motion can be written

ρ
dv

dt
= −∇p+ ρ f , (3.8)

where f is the body force per unit mass which has yet to be specified. The pressure p is
defined such that the force on a surface element dA with outward normal n is −pn dA.
This may be identified with the ordinary thermodynamic pressure.
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By using equation (3.2), we may also write equation (3.8) as

ρ
∂ v

∂t
+ ρv · ∇v = −∇p+ ρ f . (3.9)

Among the possible body forces I consider only gravity. Thus in particular I neglect
effects of magnetic fields, which might otherwise provide a body force on the gas. The force
per unit mass from gravity is the gravitational acceleration g, which can be written as the
gradient of the gravitational potential Φ:

g = −∇Φ , (3.10)

where Φ satisfies Poisson’s equation

∇2Φ = 4πGρ . (3.11)

It is often convenient to use also the integral solution to Poisson’s equation

Φ (r, t) = −G
∫

V

ρ(r′, t)dV
|r− r′| . (3.12)

3.1.3 Energy equation

To complete the equations we need a relation between p and ρ. This must take the form of
a thermodynamic relation. Specifically the first law of thermodynamics,

dq

dt
=

dE

dt
+ p

dV

dt
, (3.13)

must be satisfied; here dq/dt is the rate of heat loss or gain, and E the internal energy, per
unit mass. As before V = 1/ρ is specific volume. Thus equation (3.13) expresses the fact
that the heat gain goes partly to change the internal energy, partly into work expanding
or compressing the gas. Alternative formulations of equation (3.13), using the equation of
continuity, are

dq

dt
=

dE

dt
− p

ρ2

dρ

dt
=

dE

dt
+
p

ρ
div v . (3.14)

By using thermodynamic identities the energy equation can be expressed in terms of other,
and more convenient, variables.

dq

dt
=

1

ρ(Γ3 − 1)

(
dp

dt
− Γ1p

ρ

dρ

dt

)
(3.15)

= cp

(
dT

dt
− Γ2 − 1

Γ2

T

p

dp

dt

)
(3.16)

= cV

[
dT

dt
− (Γ3 − 1)

T

ρ

dρ

dt

]
. (3.17)

Here cp and cV are the specific heat per unit mass at constant pressure and volume, and
the adiabatic exponents are defined by

Γ1 =

(
∂ ln p

∂ ln ρ

)

ad

,
Γ2 − 1

Γ2
=

(
∂ lnT

∂ ln p

)

ad

, Γ3 − 1 =

(
∂ lnT

∂ ln ρ

)

ad

. (3.18)
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These relations are discussed in more detail in, e.g., Cox & Giuli (1968).
It is evident that the relation between p, ρ and T , as well as the Γi’s, depend on the

thermodynamic state and composition of the gas. Indeed, as will be discussed below, the
dependence of Γ1 on the properties of the gas forms the basis for using observed solar
oscillation frequencies to probe the details of the statistical mechanics of partially ionized
gases and to infer the helium abundance of the solar convective envelope. However, in many
cases one may as a first approximation regard the gas as fully ionized and neglect effects of
degeneracy and radiation pressure. Then the equation of state is simply

p =
kBρT

µmu
, (3.19)

where kB is Boltzmann’s constant, mu is the atomic mass unit and µ is the mean molecular
weight. Also

Γ1 = Γ2 = Γ3 = 5/3 . (3.20)

I note that radiation pressure decreases Γ1 below this value; this effect becomes noticeable
in stars whose mass exceeds a few solar masses. Thus Otzen Petersen (1975) showed that
radiation pressure caused a systematic increase of the pulsation constant (cf. eq. 2.20) with
increasing luminosity along the Cepheid instability strip.

We need to consider the heat gain in more detail. Specifically, it can be written as

ρ
dq

dt
= ρ ε− div F ; (3.21)

here ε is the rate of energy generation per unit mass (e.g. from nuclear reactions), and F
is the flux of energy. In general, radiation is the only significant contributor to the energy
flux; in particular, molecular conduction is almost always negligible.

In convection zones turbulent gas motion provides a very efficient transport of energy.
Ideally the entire hydrodynamical system, including convection, must be described as a
whole. In this case only the radiative flux would be included in equation (3.21). However,
under most circumstances the resulting equations are too complex to be handled analytically
or numerically. Thus it is customary to separate out the convective motion, by performing
averages of the equations over length scales that are large compared with the convective
motion, but small compared with other scales of interest. In this case the convective flux
appears as an additional contribution in equation (3.21). The convective flux must then
be determined, from the other quantities characterizing the system, by considering the
equations for the turbulent motion. A familiar example of this (which is also characteristic
of the lack of sophistication in current treatments of convection) is the mixing-length theory.

The incorporation of convection in the hydrodynamical equations was discussed in some
detail by Unno et al. (1989). However, it is fair to say that this is currently one of the
principal uncertainties in stellar hydrodynamics.

The general calculation of the radiative flux is also non-trivial. In stellar atmospheres
the full radiative transfer problem, as known from the theory of the structure of stellar
atmospheres, must be solved in combination with the hydrodynamic equations. This is
another active area of research, and the subject of a major monograph (Mihalas & Mihalas
1984). In stellar interiors the diffusion approximation is adequate, and the radiative flux is
given by

F = − 4π

3κρ
∇B = − 4ac̃T 3

3κρ
∇T , (3.22)
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where B = (ac̃/4π)T 4 is the integrated Planck function, κ is the opacity, c̃ is the speed of
light and a is the radiation density constant; this provides a relation between the state of
the gas and the radiative flux, which is analogous to a simple conduction equation.

When the mean free path of a photon is very large, one can neglect the contribution
from absorption to the heating of the gas. Then we have that

div F = 4πρκaB , (3.23)

where κa is the opacity arising from absorption; this is the so-called Newton’s law of cooling.
Finally, one can generalize the Eddington approximation, which may be known from the
theory of static stellar atmospheres, to the three-dimensional case (see Unno & Spiegel
1966), to obtain

div F = −4πρκa(J −B) , (3.24)

F = − 4π

3(κa + κs)ρ
∇J , (3.25)

where κs is the scattering opacity and J is the mean intensity. As shown by Unno &
Spiegel the Eddington approximation tends to the diffusion approximation when κaρ→∞.
Furthermore, it has the correct limit in the optically thin case.

Here I have implicitly assumed that the scattering and absorption coefficients are inde-
pendent of the frequency of radiation. In the diffusion approximation, the generalization
to frequency-dependence leads to the introduction of the Rosseland mean opacity. In the
optically thin case, one must in general take into account the details of the distribution of
intensity with frequency; thus, in equations (3.23) – (3.25) the absorption and scattering co-
efficients must be thought of as suitable averages, whereas F and J are frequency-integrated
quantities.

3.1.4 The adiabatic approximation

For the purpose of calculating stellar oscillation frequencies, the complications of the energy
equation can be avoided to a high degree of precision, by neglecting the heating term in
the energy equation. To see that this is justified, consider the energy equation on the form,
using equation (3.22)

dT

dt
− Γ2 − 1

Γ2

T

p

dp

dt
=

1

cp

[
ε+

1

ρ
div

(
4ac̃T 3

3κρ
∇T

)]
. (3.26)

Here the term in the temperature gradient can be estimated as

1

ρcp
div

(
4ac̃T 3

3κρ
∇T

)
∼ 4ac̃T 4

3κρ2cpL2
=

T

τF
, (3.27)

where L is a characteristic length scale, and τF is a characteristic time scale for radiation,

τF =
3κρ2cpL2

4ac̃T 3
' 1012κρ

2L2

T 3
, in cgs units . (3.28)

Typical values for the entire Sun are κ = 1, ρ = 1, T = 106, L = 1010, and hence τF ∼ 107

years. This corresponds to the Kelvin-Helmholtz time for the star. For the solar convection
zone the corresponding values are κ = 100, ρ = 10−5, T = 104, L = 109, and hence
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τF ∼ 103 years. In the outer parts of the star the term in ε vanishes, whereas in the
core it corresponds to a characteristic time τε ∼ cpT/ε which is again of the order of the
Kelvin-Helmholtz time. T/τF or T/τε must be compared with the time derivative of T in
equation (3.26), which can be estimated as T/(period of oscillation). Typical periods are
of the order of minutes to hours, and hence the heating term in equation (3.26) is generally
very small compared with the time-derivative terms. Near the surface, on the other hand,
the density, and hence the radiative time scale, is low, and the full energy equation must
be taken into account.

Where the heating can be neglected, the motion occurs adiabatically. Then p and ρ are
related by

dp

dt
=

Γ1p

ρ

dρ

dt
. (3.29)

This equation, together with the continuity equation (3.5), the equations of motion (3.9)
and Poisson’s equation (3.11), form the complete set of equations for adiabatic motion.
Most of our subsequent work is based on these equations.

3.2 Equilibrium states and perturbation analysis

A general hydrodynamical description of a star, using the equations presented in the preced-
ing section, is far too complex to handle, even numerically on the largest existing computers.
To put this in perspective, it may be mentioned that Å. Nordlund and R. Stein (e.g. Nord-
lund & Stein 1989; Stein, Nordlund & Kuhn 1989), by stretching the capabilities of existing
computers to the limits, have been able to follow numerically the development of a very
small region near the solar surface for a few hours. Even though this is a tremendous
achievement, which will be of great value to our understanding of solar convection and
solar oscillations, it clearly demonstrates the impracticality of a direct numerical solution
for, say, general oscillations involving the entire Sun. Furthermore, even to the extent that
such a solution were possible, the results would in general be so complicated that a simpli-
fied analysis is needed to understand them. Fortunately, in the case of stellar oscillations,
considerable simplifications are possible. The observed solar oscillations have very small
amplitudes compared with the characteristic scales of the Sun, and so it can be treated
as a small perturbation around a static equilibrium state. Even in “classical” pulsating
stars, where the surface amplitudes are large, most of the energy in the motion is in regions
where the amplitudes are relatively small; thus many of the properties of these oscillations,
including their periods, can be understood in terms of small-perturbation theory. In this
section I discuss the general equations for such small perturbations.

3.2.1 The equilibrium structure

The equilibrium structure is assumed to be static, so that all time derivatives can be ne-
glected. In addition, I assume that there are no velocities. Then the continuity equation,
(3.5), is trivially satisfied. The equations of motion (3.9) reduce to the equation of hydro-
static support,

∇ p0 = ρ0g0 = −ρ0∇Φ0 , (3.30)

where I have denoted equilibrium quantities with the subscript “0”. Poisson’s equation
(3.11) is unchanged,

∇2Φ0 = 4πGρ0 . (3.31)
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Finally the energy equation (3.21) is

0 =
dq

dt
= ε0 −

1

ρ0
div F0 . (3.32)

It might be noted that one often considers equilibrium structures that change on long
time scales. Here hydrostatic equilibrium is enforced (departures from hydrostatic equi-
librium result in motion on essentially the free-fall time scale for the star, of the order of
hours). However, it is not assumed that there is no heating, so that the general energy
equation (3.21) is used. Such a star is said to be in hydrostatic, but not in thermal, equilib-
rium. Typical examples are stars where nuclear burning does not supply the main source
of energy, as during the pre-main-sequence contraction, or after hydrogen exhaustion in
the core. Even during normal main sequence evolution the heating term provides a small
contribution to the energy, which is normally taken into account in calculations of stellar
evolution. However, we need not consider this further here.

For the present purpose the most important example of equilibrium is clearly a spher-
ically symmetric state, where the structure depends only on the distance r to the centre.
Here g0 = −g0ar, where ar is a unit vector directed radially outward, and equation (3.30)
becomes

dp0

dr
= −g0ρ0 . (3.33)

Also, Poisson’s equation may be integrated once, to yield

g0 =
G

r2

∫ r

0
4πρ0r

′2 dr′ =
Gm0

r2
, (3.34)

where m0(r) is the mass in the sphere interior to r. The flux is directed radially outward,
F = Fr,0ar, so that the energy equation gives

ρ0ε0 =
1

r2

d

dr

(
r2 Fr,0

)
=

1

4πr2

dL0

dr
,

where L0 = 4πr2 Fr,0 is the total flow of energy through the sphere with radius r; hence

dL0

dr
= 4πr2ρ0ε0 . (3.35)

Finally the diffusion expression (3.22) for the flux may be written

dT0

dr
= − 3κ0ρ0

16πr2ac̃T 3
0

L0 . (3.36)

Equations (3.33) – (3.36) are clearly the familiar equations for stellar structure.

3.2.2 Perturbation analysis

We consider small perturbations around the equilibrium state. Thus, e.g., the pressure is
written as

p(r, t) = p0(r) + p′(r, t) , (3.37)

where p′ is a small perturbation; this is the so-called Eulerian perturbation, i.e., the per-
turbation at a given point. The equations are then linearized in the perturbations, by
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expanding them in the perturbations retaining only terms that do not contain products of
the perturbations.

Just as in the general case it is convenient to use also a description involving a refer-
ence frame following the motion; the perturbation in this frame is called the Lagrangian
perturbation. If an element of gas is moved from r0 to r0 + δδδr due to the perturbation, the
Lagrangian perturbation to pressure may be calculated as

δp(r) = p(r0 + δδδr)− p0(r0) = p(r0) + δδδr · ∇p0 − p0(r0)

= p′(r0) + δδδr · ∇p0 . (3.38)

Equation (3.38) is of course completely equivalent to the relation (3.2) between the local
and the material time derivative. Note also that the velocity is given by the time derivative
of the displacement δδδr,

v =
∂δδδr

∂t
. (3.39)

Equations for the perturbations are obtained by inserting expressions like (3.37) in the
full equations, subtracting equilibrium equations and neglecting quantities of order higher
than one in p′, ρ′, v, etc. For the continuity equation the result is

∂ρ′

∂t
+ div (ρ0v) = 0 , (3.40)

or, by using equation (3.39) and integrating with respect to time

ρ′ + div (ρ0δδδr) = 0 . (3.41)

Note that this equation may also, by using the analogue to equation (3.38), be written as

δρ+ ρ0div (δδδr) = 0 , (3.42)

which corresponds to equation (3.6).
The equations of motion become

ρ0
∂2δδδr

∂t2
= ρ0

∂v

∂t
= −∇p′ + ρ0g

′ + ρ′g0 , (3.43)

where, obviously, g′ = −∇Φ′. Also, the perturbation Φ′ in the gravitational potential
satisfies the perturbed Poisson’s equation

∇2Φ′ = 4πGρ′ , (3.44)

with the solution, equivalent to equation (3.12)

Φ′ = −G
∫

V

ρ′(r′, t)
|r− r′| dV . (3.45)

The energy equation requires a little thought. We need to calculate, e.g.,

dp

dt
=
∂p

∂t
+ v · ∇p =

∂p′

∂t
+ v · ∇p0 =

∂p′

∂t
+
∂δδδr

∂t
· ∇p0 =

∂

∂t
(δp) , (3.46)
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to first order in the perturbations. Note that to this order there is no difference between
the local and the material time derivative of the perturbations. Thus we have for the energy
equation, from e.g. equation (3.15),

∂δq

∂t
=

1

ρ0(Γ3,0 − 1)

(
∂δp

∂t
− Γ1,0p0

ρ0

∂δρ

∂t

)
. (3.47)

This equation is most simply expressed in Lagrangian perturbations, but it may be trans-
formed into Eulerian perturbations by using equation (3.38). From equation (3.21) the
perturbation to the heating rate is given by

ρ0
∂δq

∂t
= δ(ρε− div F) = (ρε− div F)′ , (3.48)

if equation (3.32) is used. Finally it is straightforward to obtain the perturbation to the
radiative flux, in the diffusion approximation, from equation (3.22).

For adiabatic motion we neglect the heating term and obtain

∂δp

∂t
− Γ1,0p0

ρ0

∂δρ

∂t
= 0 ,

or, by integrating over time

δp =
Γ1,0p0

ρ0
δρ , (3.49)

or, on Eulerian form

p′ + δδδr · ∇p0 =
Γ1,0p0

ρ0
(ρ′ + δδδr · ∇ρ0) . (3.50)

3.3 Simple waves

It is instructive to consider simple examples of wave motion. This provides an introduction
to the techniques needed to handle the perturbations. In addition, general stellar oscillations
can in many cases be approximated by simple waves, which therefore give physical insight
into the behaviour of the oscillations.

3.3.1 Acoustic waves

As the simplest possible equilibrium situation, we may consider the spatially homogeneous
case. Here all derivatives of equilibrium quantities vanish. According to equation (3.30)
gravity must then be negligible. Such a situation clearly cannot be realized exactly. How-
ever, if the equilibrium structure varies slowly compared with the oscillations, this may
be a reasonable approximation. I also neglect the perturbation to the gravitational poten-
tial; for rapidly varying perturbations regions with positive and negative ρ′ nearly cancel
in equation (3.45), and hence Φ′ is small. Finally, I assume the adiabatic approximation
(3.49).

The equations of motion (3.43) give

ρ0
∂2δδδr

∂t2
= −∇p′ ,
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or, by taking the divergence

ρ0
∂2

∂t2
(div δδδr) = −∇2p′ .

However, div δδδr can be eliminated by using the continuity equation (3.41), and p′ can be
expressed in terms of ρ′ from the adiabatic relation. The result is

∂2ρ′

∂t2
=

Γ1,0p0

ρ0
∇2ρ′ = c2

0∇2ρ′ , (3.51)

where

c2
0 ≡

Γ1,0p0

ρ0
(3.52)

has the dimension of a squared velocity. This equation has the form of the wave equation.
Thus it has solutions in the form of plane waves

ρ′ = a exp[i(k · r− ω t)] . (3.53)

(As discussed in more detail in Chapter 4 it is convenient to write the solution in complex
form; the physically realistic solution is obtained by taking the real part of the complex
solution.) By substituting equation (3.53) into (3.51) we obtain

−ω2ρ′ = c2
0 div (ikρ′) = −c2

0|k|2ρ′ . (3.54)

Thus this is a solution, provided ω satisfies the dispersion relation

ω2 = c2
0 |k|2 . (3.55)

The waves are plane sound waves, and equation (3.55) is the dispersion relation for such
waves. The adiabatic sound speed c0 is the speed of propagation of the waves. I note that
when the ideal gas law, equation (3.19), is satisfied, the sound speed is given by

c2
0 =

Γ1,0kBT0

µmu
. (3.56)

Thus c0 is essentially determined by T0/µ.
With a suitable choice of phases the real solution can be written as

ρ′ = a cos(k · r− ωt) , (3.57)

p′ = c2
0a cos(k · r− ωt) , (3.58)

δδδr =
c2

0

ρ0ω2
a cos(k · r− ωt+

π

2
) k . (3.59)

Thus the displacement δδδr, and hence the velocity v, is in the direction of the wave vector k.

3.3.2 Internal gravity waves

As a slightly more complicated case, we consider a layer of gas stratified under gravity. Thus
here there is a pressure gradient, determined by equation (3.33). However, I assume that
the equilibrium quantities vary so slowly that their gradients can be neglected compared
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with gradients of perturbations. Also, as before, I neglect the perturbation to the gravita-
tional potential. Clearly one solution must be the adiabatic sound waves considered above.
However, here we seek other solutions in the form of waves with much lower frequencies.

It is possible to derive an approximate wave equation under these circumstances (cf.
Section 7.5). However, to simplify the analysis I assume a solution in the form of a plane
wave from the outset. Thus I take all perturbation variables to vary as

exp[i(k · r− ωt)] . (3.60)

Because of the presence of gravity there is a preferred direction in the problem. I choose a
vertical coordinate r directed upward, so that g0 = −g0ar, and

∇p0 =
dp0

dr
ar , ∇ρ0 =

dρ0

dr
ar . (3.61)

Also, I separate the displacement δδδr and the wave vector k into radial and horizontal
components,

δδδr = ξrar + ξξξh , (3.62)

k = krar + kh . (3.63)

The radial and horizontal components of the equations (3.43) are

−ρ0ω
2ξr = −ikrp′ − ρ′g0 , (3.64)

−ρ0ω
2ξξξh = −ikhp

′ , (3.65)

and the continuity equation, (3.41), can be written

ρ′ + ρ0ikrξr + ρ0ikh · ξξξh = 0 . (3.66)

From equations (3.65) and (3.66) we find the pressure perturbation

p′ =
ω2

k2
h

(ρ′ + ikrρ0ξr) . (3.67)

This may be used in equation (3.64), to obtain

−ρ0ω
2ξr = −i kr

k2
h

ω2ρ′ + ω2ρ0
k2
r

k2
h

ξr − ρ′g0 . (3.68)

For very small frequency the first term in ρ′ can be neglected compared with the second,
yielding

ρ0ω
2

(
1 +

k2
r

k2
h

)
ξr = ρ′g0 . (3.69)

Notice that this equation has a fairly simple physical meaning. Buoyancy acting on the den-
sity perturbation provides a vertical force ρ′g0 per unit volume that drives the motion. The
left-hand side gives the vertical acceleration times the mass ρ0 per unit volume; however,
it is modified by the term in the wave numbers. This arises from the pressure perturba-
tion; in order to move vertically, a blob of gas must displace matter horizontally, and this
increases its effective inertia. This effect is stronger the longer the horizontal wavelength of
the perturbation, and hence the smaller its horizontal wave number.
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The adiabatic relation (3.50) gives

ρ′ = c−2
0 p′ + ρ0δδδr ·

(
1

p0Γ1,0
∇p0 −

1

ρ0
∇ρ0

)
. (3.70)

However, we may estimate the importance of the term in p′ by noting that, according to
equation (3.67),

c−2
0 p′

ρ′
' ω2

c2
0k

2
h

. (3.71)

Here the denominator on the right-hand side is the sound-wave frequency corresponding
to the horizontal wave number kh (cf. eq. 3.55); since we are specifically interested in
oscillations with frequencies far smaller than the frequencies of sound waves, this term can
be neglected. Physically, the neglect of the pressure perturbation essentially corresponds to
assuming that the perturbation is always in hydrostatic equilibrium; this might be compared
with the conventional discussion of convective stability in terms of displaced blobs of fluid,
where pressure balance is also assumed. Inserting the expression for ρ′ resulting from
equation (3.70), when p′ is neglected, in equation (3.69) finally yields

ω2

(
1 +

k2
r

k2
h

)
ξr = N2ξr , (3.72)

where

N2 = g0

(
1

Γ1,0

d ln p0

dr
− d ln ρ0

dr

)
(3.73)

is the square of the buoyancy or Brunt-Väisälä frequency N .
The physical significance of N follows from the ‘blob’ argument for convective stability

(e.g. Christensen-Dalsgaard 1993a; see also Cox 1980, Section 17.2): if a fluid element
is displaced upwards adiabatically, its behaviour depends on whether the density of the
element is higher or smaller than its new surroundings. When N 2 > 0 the element is
heavier than the displaced fluid, and buoyancy forces it back towards the original position;
thus in this case the element executes an oscillation around the equilibrium position. On
the other hand, if N2 < 0 the element is lighter than the displaced fluid and buoyancy
acts to enhance the motion, forcing the element away from equilibrium; this corresponds
to convective instability.

From equation (3.72) we obtain the dispersion relation

ω2 =
N2

1 + k2
r/k

2
h

. (3.74)

When N2 > 0 the motion is oscillatory. Then N is the frequency in the limit of infinite
kh, i.e., for infinitely small horizontal wavelength. This corresponds to oscillations of fluid
elements in the form of slender “needles”. For greater horizontal wavelength the horizontal
motion increases the inertia, as discussed above, and hence decreases the frequency. These
waves are known as internal gravity waves (not to be confused with the gravitational waves
in general relativity).

The condition that N 2 > 0 can also be written as

d ln ρ0

d ln p0
>

1

Γ1,0
; (3.75)
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when it is not satisfied, ω is imaginary, and the motion grows exponentially with time. This
is the linear case of convective instability. In general the motion grows until it breaks down
into turbulence due to nonlinear effects. Thus gravity waves cannot propagate in convective
regions. I return to this when discussing the asymptotic theory of stellar oscillations.

The condition (3.75) is the proper criterion for convective stability; it is normally known
as the Ledoux condition. The more usual condition, in terms of p and T , viz

d lnT0

d ln ρ0
< ∇ad =

Γ2,0 − 1

Γ2,0
, (3.76)

can be obtained from equation (3.74) by using thermodynamic identities, when the chemi-
cal composition is homogeneous. Equation (3.76) is known as the Schwarzschild criterion.
When there are gradients in the chemical composition, the two conditions are not equiva-
lent. Nonetheless, the Schwarzschild criterion is most often used in calculations of stellar
evolution, due to computational convenience.

3.3.3 Surface gravity waves

In addition to the internal gravity waves described above, there is a distinct, and more
familiar, type of gravity waves, known, e.g. from the Bay of Aarhus. These are waves at a
discontinuity in density.

We consider a liquid at constant density ρ0, with a free surface. Thus the pressure on
the surface is assumed to be constant. The layer is infinitely deep. I assume that the liquid
is incompressible, so that ρ0 is constant and the density perturbation ρ′ = 0. From the
equation of continuity we therefore get

div v = 0 . (3.77)

Gravity g is assumed to be uniform, and directed vertically downwards. Since the density
perturbation is zero, so is the perturbation to the gravitational potential.

In the interior of the liquid the equations of motion reduce to

ρ0
∂v

∂t
= −∇p′ . (3.78)

The divergence of this equation gives

∇2p′ = 0 . (3.79)

We introduce a horizontal coordinate x, and a vertical coordinate z increasing downward,
with z = 0 at the free surface. We now seek a solution in the form of a wave propagating
along the surface, in the x-direction. Here p′ has the form

p′(x, z, t) = f(z) cos(khx− ωt) , (3.80)

where f is a function yet to be determined. By substituting equation (3.80) into equation
(3.79) we obtain

d2f

dz2
= k2

hf ,

or
f(z) = a exp(−khz) + b exp(khz) . (3.81)
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As the layer is assumed to be infinitely deep, b must be zero.
We must now consider the boundary condition at the free surface. Here the pressure

is constant, and therefore the Lagrangian pressure perturbation vanishes (the pressure is
constant on the perturbed surface), i.e.,

0 = δp = p′ + δδδr · ∇p0 = p′ + ξzρ0g0 at z = 0 , (3.82)

where ξz is the z-component of the displacement. This is obtained from the vertical com-
ponent of equation (3.78), for the solution in equation (3.81) with b = 0, as

ξz = − kh

ρ0ω2
p′ . (3.83)

Thus equation (3.82) reduces to

0 =

(
1− g0kh

ω2

)
p′ ,

and hence the dispersion relation for the surface waves is

ω2 = g0kh . (3.84)

The frequencies of the surface gravity waves depend only on their wavelength and on
gravity, but not on the internal structure of the layer, in particular the density. In this they
resemble a pendulum, whose frequency is also independent of its constitution. Indeed, the
frequency of a wave with wave number kh, and wavelength λ, is the same as the frequency
of a mathematical pendulum with length

L =
1

kh
=

λ

2π
. (3.85)


