
Chapter 4

Equations of linear stellar
oscillations

In the present chapter the equations governing small oscillations around a spherical equi-
librium state are derived. The general equations were presented in Section 3.2. However,
here we make explicit use of the spherical symmetry. These equations describe the general,
so-called nonradial oscillations, where spherical symmetry of the perturbations is not as-
sumed. The more familiar case of radial, or spherically symmetric, oscillations, is contained
as a special case.

4.1 Mathematical preliminaries

It is convenient to write the solution to the perturbation equations on complex form, with
the physically realistic solution being obtained as the real part of the complex solution. To
see that this is possible, notice that the general equations can be written as

A
∂y

∂t
= B(y) , (4.1)

where the vector y consists of the perturbation variables (δδδr, p′, ρ′, · · ·), A is a matrix with
real coefficients, and B is a linear matrix operator involving spatial gradients, etc., with
real coefficients. Neither A nor B depend on time. If y is a complex solution to equation
(4.1) then the complex conjugate y∗ is also a solution, since

A
∂y∗

∂t
=

(
A
∂y

∂t

)∗
= [B(y)]∗ = B(y∗) , (4.2)

and hence, as the system is linear and homogeneous, the real part <(y) = 1/2(y + y∗) is a
solution.

Because of the independence of time of the coefficients in equation (4.1), solutions can
be found of the form

y(r, t) = ŷ(r) exp(− i ω t) . (4.3)

This is a solution if the amplitude function ŷ satisfies the eigenvalue equation

−iωA · ŷ = B(ŷ) . (4.4)
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58 CHAPTER 4. EQUATIONS OF LINEAR STELLAR OSCILLATIONS

Equations of this form were also considered in Section 3.3 for simple waves. Note that in
equations (4.3) and (4.4) the frequency ω must in general be assumed to be complex.

Figure 4.1: The spherical polar coordinate system.

Equation (4.3) is an example of the separability of the solution to a system of linear
partial differential equations, when the equations do not depend of one of the coordinates.
As the equilibrium state is spherically symmetric, we may expect a similar separability in
spatial coordinates. Specifically I use spherical polar coordinates (r, θ, φ) (cf. Figure 4.1),
where r is the distance to the centre, θ is colatitude (i.e., the angle from the polar axis),
and φ is longitude. Here the equilibrium is independent of θ and φ, and the solution must
be separable. However, the form of the separated solution depends on the physical nature
of the problem, and so must be discussed in the context of the reduction of the equations.
This is done in the next section.

Here I present some relations in spherical polar coordinates that will be needed in the
following [see also Appendix 2 of Batchelor (1967)]. Let ar, aθ and aφ be unit vectors in
the r, θ and φ directions, let V be a general scalar field, and let

F = Frar + Fθaθ + Fφaφ (4.5)
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be a vector field. Then the gradient of V is

∇V =
∂V

∂r
ar +

1

r

∂V

∂θ
aθ +

1

r sin θ

∂V

∂φ
aφ , (4.6)

the divergence of F is

div F =
1

r2

∂

∂r
(r2Fr) +

1

r sin θ

∂

∂θ
(sin θFθ) +

1

r sin θ

∂Fφ
∂φ

, (4.7)

and consequently the Laplacian of V is

∇2V = div (∇V ) (4.8)

=
1

r2

∂

∂r

(
r2∂V

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂V

∂θ

)
+

1

r2 sin2 θ

∂2V

∂φ2
.

Finally, we need the directional derivatives, in the direction, say, of the vector

n = nrar + nθaθ + nφaφ. (4.9)

The directional derivative n · ∇V of a scalar is obtained, as would be naively expected, as
the scalar product of n with the gradient in equation (4.6). However, in the directional
derivatives n · ∇F of a vector field, the change in the unit vectors ar, aθ and aφ must be
taken into account. The result is

n · ∇F =

(
n · ∇Fr −

nθFθ
r
− nφFφ

r

)
ar

+

(
n · ∇Fθ −

nφFφ
r

cot θ +
nθFr
r

)
aθ

+

(
n · ∇Fφ +

nφFr
r

+
nφFθ
r

cot θ

)
aφ , (4.10)

where the directional derivatives of Fr, Fθ and Fφ are the same as for a scalar field.
As the radial direction has a special status, it is convenient to introduce the horizontal

(or, properly speaking, tangential) component of the vector F:

Fh = Fθaθ + Fφaφ , (4.11)

and similarly the horizontal components of the gradient, divergence and Laplacian as

∇hV =
1

r

∂V

∂θ
aθ +

1

r sin θ

∂V

∂φ
aφ , (4.12)

∇h · F =
1

r sin θ

∂

∂θ
(sin θFθ) +

1

r sin θ

∂Fφ
∂φ

, (4.13)

and

∇2
hV =

1

r2 sin θ

∂

∂θ
(sin θ

∂V

∂θ
) +

1

r2 sin2 θ

∂2V

∂φ2
. (4.14)
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4.2 The Oscillation Equations

4.2.1 Separation of variables

The displacement δδδr is separated into radial and horizontal components as

δδδr = ξrar + ξξξh . (4.15)

The horizontal component of the equations of motion, (3.43), is

ρ0
∂2ξξξh

∂t2
= −∇hp

′ − ρ0∇hΦ′ . (4.16)

As the horizontal gradient of equilibrium quantities is zero, the horizontal divergence of
equation (4.16) gives

ρ0
∂2

∂t2
∇h · ξξξh = −∇2

hp
′ − ρ0∇2

hΦ′ . (4.17)

The equation of continuity, (3.41), can be written as

ρ′ = − 1

r2

∂

∂r
(ρ0r

2ξr)− ρ0∇h · ξξξh . (4.18)

This can be used to eliminate ∇h · ξξξh from equation (4.17), which becomes

− ∂2

∂t2

[
ρ′ +

1

r2

∂

∂r
(r2ρ0ξr)

]
= −∇2

hp
′ − ρ0∇2

hΦ′ . (4.19)

The radial component of equation (3.43) is

ρ0
∂2ξr
∂t2

= −∂p
′

∂r
− ρ′g0 − ρ0

∂Φ′

∂r
. (4.20)

Finally, Poisson’s equation (3.44) may be written as

1

r2

∂

∂r

(
r2∂Φ′

∂r

)
+∇2

hΦ′ = 4πGρ′ . (4.21)

It should be noticed that in equations (4.19) – (4.21) derivatives with respect to the
angular variables θ and φ only appear in the combination ∇2

h.
We now have to consider the energy equation (3.47), together with equation (3.48) for

the heat gain. The result clearly depends on the form assumed for the flux F. However, if
the flux can be expressed in terms of a gradient of a scalar, as in the diffusion approximation
[equation (3.22)], the energy equation also only contains derivatives with respect to θ and
φ in ∇2

h.

Exercise 4.1:

Show this.

We may now address the separation of the angular variables. The object is to factor
out the variation of the perturbations with θ and φ as a function f(θ, φ). From the form
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of the equations this is clearly possible, if f is an eigenfunction of the horizontal Laplace
operator,

∇2
hf = − 1

r2
Λf , (4.22)

where Λ is a constant. That 1/r2 has to appear is obvious from equation (4.14); the choice
of sign is motivated later. Writing it out in full, equation (4.22) becomes

1

sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

sin2 θ

∂2f

∂φ2
= −Λ f . (4.23)

As the coefficients in this equation are independent of φ, the solution can be further
separated, as

f(θ, φ) = f1(θ)f2(φ) . (4.24)

It follows from equation (4.23) that f2 satisfies an equation of the form

d2f2

dφ2
= αf2 , (4.25)

where α is another constant; this has the solution f2 = exp(±α1/2φ). However, the solution
has to be continuous and hence periodic, i.e., f2(0) = f2(2π). Consequently we must
demand that α1/2 = im, where m is an integer.

When used in equation (4.23), this gives the following differential equation for f1:

d

dx

[
(1− x2)

df1

dx

]
+

(
Λ− m2

1− x2

)
f1 = 0 , (4.26)

where x = cos θ. It can be shown that this equation has a regular solution only when

Λ = l(l + 1) , (4.27)

where l is a non-negative integer and

|m| ≤ l . (4.28)

The regular solution is
f1(θ) = Pml (cos θ) , (4.29)

where Pml is the Legendre function. By including an appropriate scaling factor we may
finally write

f(θ, φ) = (−1)mclmP
m
l (cos θ) exp(imφ) ≡ Y m

l (θ, φ) , (4.30)

where Y m
l is a spherical harmonic; here clm is a normalization constant given by equation

(2.2), such that the integral of |Y m
l |2 over the unit sphere is 1. Y m

l is characterized by its
degree l and its azimuthal order m; the properties of spherical harmonics were discussed in
more detail in Section 2.1 (see also Appendix A). From equations (4.22) and (4.27) we also
have that

∇2
hf = − l(l + 1)

r2
f . (4.31)

The dependent variables in equations (4.19) – (4.21) can now be written as

ξr(r, θ, φ, t) =
√

4π ξ̃r(r)Y
m
l (θ, φ) exp(−iωt) , (4.32)
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p′(r, θ, φ, t) =
√

4π p̃′(r)Y m
l (θ, φ) exp(−iωt) , (4.33)

etc. Also it follows from equation (3.38) that if the Eulerian perturbations are on the
form given in these equations, so are the Lagrangian perturbations. Then the equations
contain Y m

l (θ, φ) exp(−iωt) as a common factor. After dividing by it, the following ordinary
differential equations for the amplitude functions ξ̃r, p̃

′, · · ·, result:

ω2
[
ρ̃′ +

1

r2

d

dr
(r2ρ0ξ̃r)

]
=
l(l + 1)

r2
(p̃′ + ρ0Φ̃′) , (4.34)

−ω2ρ0ξ̃r = − dp̃′

dr
− ρ̃′g0 − ρ0

dΦ̃′

dr
, (4.35)

1

r2

d

dr

(
r2 dΦ̃′

dr

)
− l(l + 1)

r2
Φ̃′ = 4πGρ̃′ , (4.36)

together with the energy equation

(
δp̃− Γ1,0p0

ρ0
δρ̃

)
= ρ0(Γ3,0 − 1)δq̃ . (4.37)

It should be noted that equations (4.34) – (4.37) do not depend on the azimuthal order
m. This is a consequence of the assumed spherical symmetry of the equilibrium state,
which demands that the results should be independent of the choice of polar axis for the
coordinate system. Changing the polar axis would change the spherical harmonics, in such
a way that a new spherical harmonic, with given l and m, would be a linear combination
over m of the old spherical harmonics with the given value of l (Edmonds 1960). As this
change of axis can have no effect on the dynamics of the oscillations, the equations must
be independent of m, as found here.

From equation (4.16) the horizontal component of the displacement is given by

ξξξh =
√

4π ξ̃h(r)

(
∂Y m

l

∂θ
aθ +

1

sin θ

∂Y m
l

∂φ
aφ

)
exp(−iωt) , (4.38)

where

ξ̃h(r) =
1

rω2
(

1

ρ0
p̃′ + Φ̃′) . (4.39)

Thus the (physical) displacement vector can be written as

δδδr =
√

4π<
{[
ξ̃r(r)Y

m
l (θ, φ)ar (4.40)

+ξ̃h(r)

(
∂Y m

l

∂θ
aθ +

1

sin θ

∂Y m
l

∂φ
aφ

)]
exp(−iωt)

}
.

As noted in Section 4.1 the frequency ω is in general complex. That this is so may be seen
from the energy equation (4.37), if the expression (3.48) for the heating rate perturbation is
used. Assuming the time dependence given in equations (4.33) for the perturbed quantities,
equation (3.48) can be written as

δq =
i

ρ0ω
δ(ρε− div F) . (4.41)
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Here the perturbations on the right-hand side can be expressed in terms of the perturbations
in, say, density and temperature. For instance, since ε is a function ε(ρ, T ) of density and
temperature, we obtain

δ(ρε) = ρε

{[
1 +

(
∂ ln ε

∂ ln ρ

)

T

]
δρ

ρ
+

(
∂ ln ε

∂ lnT

)

ρ

δT

T

}
. (4.42)

The expression for δ(div F) depends on the treatment of the energy transport, discussed
in Section 3.1.3. Often the diffusion approximation is adequate; then δ(div F) may be
obtained in a fashion similar to the derivation of equation (4.42) by perturbing equation
(3.22), although with considerable effort. Note that this gives rise to a term in the second
derivative of δT with respect to r; the same is true if the Eddington approximation [equation
(3.24)] is used, whereas the use of Newton’s law of cooling [equation (3.23)] gives a direct
relation between the heat loss and the local thermodynamic variables, and hence does
not increase the order of the equations. However, regardless of the approximation used,
substitution of the relevant relations into the energy equation, written in terms of ρ and T ,
results in an equation which, because of the factor i/ω in the expression for δq, has complex
coefficients. Hence the oscillation equations cannot in general have a real solution.

The complex frequency can be expressed as ω = ωr + iη, where ωr and η are real;
consequently the dependence of the perturbations on φ and t is of the form

cos(mφ− ωrt+ δ0)eηt , (4.43)

where δ0 is the initial phase. For m 6= 0 this describes a wave traveling around the equator
with angular phase speed ωr/m, whereas for m = 0 the perturbation is a standing wave.
The period of the perturbation is Π = 2π/ωr. Its amplitude grows or decays exponentially
with time, depending on whether the growth rate η is positive or negative.

Neglecting η, we may obtain the mean square components of the displacement, when
averaged over a spherical surface and time, from equation (4.40). For the radial component
the result is

δr2
rms = 〈|δr · ar|2〉 (4.44)

=
1

Π

∫ Π

0
dt

1

4π

∮ {
<
[
ξ̃r(r)Y

m
l (θ, φ) exp(−iωt)

]}2
dΩ

=
1

2
|ξ̃r(r)|2 ,

where Ω is solid angle. Similarly, the mean square length of the horizontal component of
δδδr is

δh2
rms = 〈|ξξξh|2〉 = 1/2 l(l + 1)|ξ̃h(r)|2 , (4.45)

where ξ̃h is the amplitude function introduced in equation (4.39).

Exercise 4.2:

Verify equations (4.44) and (4.45). Note that the latter is a little tricky: this requires
integration by parts and use of the fact that Pm

l satisfies equation (4.23).
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The kinetic energy of pulsation is

Ekin =
1

2

∫

V
|v|2ρ0dV . (4.46)

As in equations (4.44) and (4.45) it follows from equation (4.40) that the time-averaged
energy is 1/4ω2E , where

E = 4π

∫ R

0
[|ξ̃r(r)|2 + l(l + 1)|ξ̃h(r)|2] ρ0r

2dr . (4.47)

For m 6= 0 Ekin is independent of t, in accordance with the running-wave nature of the
oscillation in this case, whereas for m = 0 we have Ekin = 1

2ω
2E cos2(ωt − δ0). It is

convenient to introduce the dimensionless measure E of E , by

E =
4π
∫ R

0 [|ξ̃r(r)|2 + l(l + 1)|ξ̃h(r)|2]ρ0r
2dr

M [|ξ̃r(R)|2 + l(l + 1)|ξ̃h(R)|2]
=
Mmode

M
, (4.48)

where M is the total mass of the star, and Mmode is the so-called modal mass; thus E
provides a measure of the normalized inertia of the mode. These quantities are defined
such that the time-averaged kinetic energy in the oscillation is

1/2MmodeV
2

rms = 1/2EMV 2
rms , (4.49)

where V 2
rms is the mean, over the stellar surface and time, of the squared total velocity of

the mode.
From equation (4.31) it follows that for any perturbation quantity ψ ′,

∇2
hψ
′ = − l(l + 1)

r2
ψ′ . (4.50)

Thus if the oscillations are regarded locally as plane waves, as in equation (3.53), we may
make the identification

l(l + 1)

r2
= k2

h , (4.51)

where kh is the length of the horizontal component of the wave vector, as in equation (3.63);
note in particular that kh depends on r.

For completeness, I note that the modes discussed so far (which are the only modes
considered in the following), are known as spheroidal modes. In addition there is a second
class of modes, the toroidal modes, which are briefly discussed in Cox (1980), Section 17.3.
In a spherically symmetric (and hence nonrotating) star, they have zero frequency and
correspond to infinitely slow, purely horizontal motion. In a rotating star they give rise to
oscillations whose frequencies are of the order of the rotation frequency.

4.2.2 Radial oscillations

For radial oscillations, with l = 0, the perturbation in the gravitational field may be elim-
inated analytically. From Poisson’s equation in the form (4.36) we have, by using the
equation of continuity (4.18) with zero horizontal part, that

1

r2

d

dr

(
r2 dΦ̃′

dr

)
= −4πG

r2

d

dr
(r2ρ0ξ̃r) , (4.52)
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or, as the gravitational force must be finite at r = 0,

dΦ̃′

dr
= −4πGρ0ξ̃r . (4.53)

Furthermore, the term containing Φ̃′ drops out in equation (4.34).
With these eliminations, the oscillation equations can be reduced to a relatively simple

form. We write the energy equation (4.37) as

ρ̃′ =
ρ0

Γ1,0p0
p̃′ + ρ0ξ̃r

(
1

Γ1,0p0

dp0

dr
− 1

ρ0

dρ0

dr

)
− ρ2

0

Γ1,0p0
(Γ3,0 − 1)δq̃ . (4.54)

Then equation (4.34) may be written as

dξ̃r
dr

= −2

r
ξ̃r −

1

Γ1,0p0

dp0

dr
ξ̃r −

1

Γ1,0p0
p̃′ +

ρ0

Γ1,0p0
(Γ3,0 − 1)δq̃ , (4.55)

or, introducing ζ ≡ ξ̃r/r,

p̃′ = −Γ1,0p0r

(
dζ

dr
+

3

r
ζ +

1

Γ1,0p0

dp0

dr
ζ

)
+ ρ0(Γ3,0 − 1)δq̃ . (4.56)

By substituting equations (4.53), (4.54) and (4.56) into equation (4.35) we obtain, after a
little manipulation,

1

r3

d

dr

(
r4Γ1,0p0

dζ

dr

)
+

d

dr
[(3Γ1,0 − 4)p0]ζ + ρ0ω

2rζ =
d

dr
[ρ0(Γ3,0 − 1)δq̃] . (4.57)

Exercise 4.3:

Fill in the missing steps in the derivation of equation (4.57).

It is important to note that the apparent simplicity of equation (4.57) hides a great deal
of complexity in the heating term on the right-hand side. Nevertheless, this equation is
convenient for discussions of the properties of radial oscillations. In these notes, however, I
shall mostly consider the general equations for nonradial oscillations, where l can take any
value.

4.3 Linear, adiabatic oscillations

To simplify the notation, from now on I drop the tilde on the amplitude functions, and the
“0” on equilibrium quantities. This should not cause any confusion.



66 CHAPTER 4. EQUATIONS OF LINEAR STELLAR OSCILLATIONS

4.3.1 Equations

For adiabatic oscillations, δq = 0 and equation (4.37) can be written

ρ′ =
ρ

Γ1p
p′ + ρξr

(
1

Γ1p

dp

dr
− 1

ρ

dρ

dr

)
. (4.58)

This may be used to eliminate ρ′ from equations (4.34) – (4.36). From equation (4.34) we
obtain

dξr
dr

= −
(

2

r
+

1

Γ1p

dp

dr

)
ξr +

1

ρ

[
l(l + 1)

ω2r2
− 1

c2

]
p′ +

l(l + 1)

ω2r2
Φ′ , (4.59)

where we used that c2 = Γ1p/ρ is the square of the adiabatic sound speed [cf. equation
(3.52)]. It is convenient to introduce the characteristic acoustic frequency Sl by

S2
l =

l(l + 1)c2

r2
= k2

hc
2 . (4.60)

Then equation (4.59) can be written as

dξr
dr

= −
(

2

r
+

1

Γ1p

dp

dr

)
ξr +

1

ρc2

(
S2
l

ω2
− 1

)
p′ +

l(l + 1)

ω2r2
Φ′ . (4.61)

Equation (4.35) gives

dp′

dr
= ρ(ω2 −N2)ξr +

1

Γ1p

dp

dr
p′ − ρdΦ′

dr
, (4.62)

where, as in equation (3.73), N is the buoyancy frequency, given by

N2 = g

(
1

Γ1p

dp

dr
− 1

ρ

dρ

dr

)
. (4.63)

Finally, equation (4.36) becomes

1

r2

d

dr

(
r2 dΦ′

dr

)
= 4πG

(
p′

c2
+
ρξr
g
N2
)

+
l(l + 1)

r2
Φ′ . (4.64)

Equations (4.61), (4.62) and (4.64) constitute a fourth-order system of ordinary differ-
ential equations for the four dependent variables ξr, p

′, Φ′ and dΦ′/dr. Thus it is a complete
set of differential equations.

For radial oscillations equations (4.61) and (4.62), after elimination of the terms in Φ′ by
means of equation (4.53), reduce to a second-order system in ξr and p′; an alternative for-
mulation of this set of equations is obtained from equation (4.57), by setting the right-hand
side to zero. The reduction to second order is a useful simplification from a computational
point of view, and it may be exploited in asymptotic analyses. However, here I shall always
treat radial oscillations in the same way as the nonradial case.

It should be noticed that all coefficients in equations (4.61), (4.62) and (4.64) are real.
Also, as discussed below, the same is true of the boundary conditions. Since the frequency
only appears in the form ω2, we may expect that the solution is such that ω2 is real, in
which case the eigenfunctions may also be chosen to be real. This may be proved to be
true in general. Thus the frequency is either purely real, in which case the motion is an
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undamped oscillator, or purely imaginary, so that the motion grows or decays exponentially.
From a physical point of view this results from the adiabatic approximation, which ensures
that energy cannot be fed into the motion, except from the gravitational field; thus the
only possible type of instability is a dynamical instability. I shall almost always consider
the oscillatory case, with ω2 > 0; note, however, that the convective instability discussed
briefly in Section 3.3.2 is an example of a dynamical instability.

4.3.2 Boundary conditions

To supplement the four equations in the general case, we need four boundary conditions.
These are discussed in considerable detail in Unno et al. (1989), Section 18.1, and in Cox
(1980), Section 17.6. Here I give only a brief summary.

The centre, r = 0 is a regular singular point of the equations. Thus, as is usual in the
theory of differential equations, the equations admit both regular and singular solutions at
this point. Two of the conditions serve to select the regular solutions. By expanding the
equations, it may be shown that near r = 0, ξr behaves like rl−1, whereas p′ and Φ′ behave
as rl. In the special case of radial oscillations, however, the coefficient to the leading-order
term in ξr vanishes, and ξr goes as r. Indeed it is obvious from geometrical considerations
that for spherically symmetric oscillations, the displacement must vanish at the centre.
From the expansions, two relations between the solution near r = 0 may be obtained. In
particular, it may be shown that for l > 0,

ξr ' lξh , for r → 0 . (4.65)

In the radial case, one of the conditions was implicitly used to obtain equation (4.53),
and only one central condition remains.

One surface condition is obtained by demanding continuity of Φ′ and its derivative at
the surface radius r = R. Outside the star the density perturbation vanishes, and Poisson’s
equation may be solved analytically. The solution vanishing at infinity is

Φ′ = Ar−l−1 , (4.66)

where A is a constant. Consequently Φ′ must satisfy

dΦ′

dr
+
l + 1

r
Φ′ = 0 at r = R . (4.67)

The second condition depends on the treatment of the stellar atmosphere, and may
consequently be quite complicated. These complications are discussed further in Chapter 5.
For the moment, I note that if the star is assigned a definite boundary at r = R, it is
physically reasonable to assume that the boundary is free, so that no forces act on it. In
this way the star can be considered as an isolated system. This is equivalent to requiring
the pressure to be constant at the perturbed surface. Thus as the second surface boundary
condition I take that the Lagrangian pressure perturbation vanish, i.e.,

δp = p′ + ξr
dp

dr
= 0 at r = R . (4.68)

As shown later, a more detailed analysis of the atmospheric behaviour of the oscillations
gives a very similar result, except at high frequencies.
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From equation (4.68) one can estimate the ratio between the radial and horizontal com-
ponents of the displacement on the surface. The amplitude of the horizontal displacement
is given by equation (4.39). In most cases, however, the perturbation in the gravitational
potential is small. Thus we have approximately, from equation (4.68), that

ξh(R)

ξr(R)
=

gs

Rω2
≡ σ−2 , (4.69)

where gs is the surface gravity, and σ is a dimensionless frequency, defined by

σ2 =
R3

GM
ω2 . (4.70)

Thus the surface value of ξh/ξr, to this approximation, depends only on frequency. The
ratio of the rms horizontal to vertical displacement [cf. equations (4.44) and (4.45)] is

δhrms

δrrms
=

√
l(l + 1)

σ2
at r = R . (4.71)

For the important case of the solar five-minute oscillations, σ2 ∼ 1000, and so the motion
is predominantly vertical, except at large l.


